相关系数r的计算公式(相关系数r的两个公式推导)

   日期:2022-01-09     文章发布:文章发布    网络转载:生活号    
核心提示:首先,它是一个估计量,但被它所估计的东西是什么?换言之,它是通过观测值计算的,但观测值的函数在观测值范围之外是没有什么相关性的,除非该函数是某分布之某个参数的估计量。现在的问题是这样的分布意味着什么?对于r=+1及r=-1,答案很显然;这种情况下研究对象个体的每种能力都是另一种能力的单调函数,这就是被等级相关系数所估计的东西(即研究对象个体能力的分布状况)。同样地,若研究对象个体的两种能力独立,则...
移动站源标题:http://mip.818114.com/article/item-393064.html

首先,它是一个估计量,但被它所估计的东西是什么?换言之,它是通过观测值计算的,但观测值的函数在观测值范围之外是没有什么相关性的,除非该函数是某分布之某个参数的估计量。现在的问题是这样的分布意味着什么?对于r =+1及r=-1,答案很显然;这种情况下研究对象个体的每种能力都是另一种能力的单调函数,这就是被等级相关系数所估计的东西(即研究对象个体能力的分布状况)。同样地,若研究对象个体的两种能力独立,则r的期望是0,所以,如果在一项研究中发现等级相关系数等于0,很自然地可将其视为(研究对象个体)两种能力无关的一种表示。然而,关于等级相关系数既不为0、也不为±1的那些数值的解释,就不那么容易了。计算等级相关系数的公式

r = ∑({x-(n+1)/2}{y-(n+1)/2})/√(∑{(x-(n+1)/2)^2} ∑{(y-(n+1)/2)^2 })

(亦可表为r = 1 – (6∑(x-y)^2 )/(n^3-n))

原本是为(两随机变量)正态相关而推导的;正态相关面在两随机变量取值中心凸起最高,而在(该两变量)其余取值处则会向各个方向延伸。在一项特定的试验中,正态相关面的各种组合都是可能出现的。但x和y的可能取值均在有限区间内,且x, y(一次)只能在其中取到也仅能取到一个值。因此,由等级相关系数公式表示的x和y的相关关系就需要作进一步的考察。等级相关系数r可能为某分布之一参数的估计量,但这分布为何并不清楚,而r是否为该参数的最佳估计也不清楚。

本文转述杰弗里关于等级相关系数的看法,更详细的讨论可见厦门大学出版社2014年出版的哈罗德·杰弗里著、龚凤乾译《概率论》4.7 等级相关,pp 251-258.


免责声明:本网部分文章和信息来源于互联网,本网转载出于传递更多信息和学习之目的,并不意味着赞同其观点或证实其内容的真实性,如有侵权请通知我们删除!(留言删除
 
 
更多>同类动态

同类新闻
最新资讯
最新发布
最受欢迎
网站首页  |  黄页  |  联系方式  |  信息  |  版权隐私  |  网站地图  |  API推送  |  网站留言  |  RSS订阅  |  违规举报  |  京ICP备2000095号